Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605182
2.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976644

RESUMO

Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins.


Assuntos
Células T Matadoras Naturais , Humanos , Células Apresentadoras de Antígenos , Lipoproteínas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36773690

RESUMO

Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.


Assuntos
Apresentação de Antígeno , Células T Matadoras Naturais , Adipócitos/metabolismo , Citocinas/metabolismo , Lipídeos , Células T Matadoras Naturais/metabolismo , Antígenos CD1d/metabolismo
4.
Cell Signal ; 104: 110587, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610523

RESUMO

The LIM-domain-only protein FHL2 is a modulator of signal transduction and has been shown to direct the differentiation of mesenchymal stem cells towards osteoblast and myocyte phenotypes. We hypothesized that FHL2 may simultaneously interfere with the induction of the adipocyte lineage. Therefore, we investigated the role of FHL2 in adipocyte differentiation. For these studies pre-adipocytes isolated from mouse adipose tissue and the 3T3-L1 (pre)adipocyte cell line were applied. We performed FHL2 gain of function and knockdown experiments followed by extensive RNAseq analyses and phenotypic characterization of the cells by oil-red O (ORO) lipid staining. Through affinity-purification mass spectrometry (AP-MS) novel FHL2 interacting proteins were identified. Here we report that FHL2 is expressed in pre-adipocytes and for accurate adipocyte differentiation, this protein needs to be downregulated during the early stages of adipogenesis. More specifically, constitutive overexpression of FHL2 drastically inhibits adipocyte differentiation in 3T3-L1 cells, which was demonstrated by suppressed activation of the adipogenic gene expression program as shown by RNAseq analyses, and diminished lipid accumulation. Analysis of the protein-protein interactions mediating this repressive activity of FHL2 on adipogenesis revealed the interaction of FHL2 with the Nuclear factor of activated T-cells 5 (NFAT5). NFAT5 is an established inhibitor of adipocyte differentiation and its knockdown rescued the inhibitory effect of FHL2 overexpression on 3T3-L1 differentiation, indicating that these proteins act cooperatively. We present a new regulatory function of FHL2 in early adipocyte differentiation and revealed that FHL2-mediated inhibition of pre-adipocyte differentiation is dependent on its interaction with NFAT5. FHL2 expression increases with aging, which may affect mesenchymal stem cell differentiation, more specifically inhibit adipocyte differentiation.


Assuntos
Adipócitos , Adipogenia , Camundongos , Animais , Adipogenia/genética , Diferenciação Celular , Adipócitos/metabolismo , Transdução de Sinais , Lipídeos , Células 3T3-L1 , Fatores de Transcrição/metabolismo , Proteínas Musculares/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/farmacologia
5.
Mol Metab ; 78: 101829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38445671

RESUMO

OBJECTIVE: In vivo studies in humans and mice have implicated the pseudokinase Tribbles 3 (TRIB3) in various aspects of energy metabolism. Whilst cell-based studies indicate a role for TRIB3 in adipocyte differentiation and function, it is unclear if and how these cellular functions may contribute to overall metabolic health. METHODS: We investigated the metabolic phenotype of whole-body Trib3 knockout (Trib3KO) mice, focusing on adipocyte and adipose tissue functions. In addition, we combined lipidomics, transcriptomics, interactomics and phosphoproteomics analyses to elucidate cell-intrinsic functions of TRIB3 in pre- and mature adipocytes. RESULTS: Trib3KO mice display increased adiposity, but their insulin sensitivity remains unaltered. Trib3KO adipocytes are smaller and display higher Proliferating Cell Nuclear Antigen (PCNA) levels, indicating potential alterations in either i) proliferation-differentiation balance, ii) impaired expansion after cell division, or iii) an altered balance between lipid storage and release, or a combination thereof. Lipidome analyses suggest TRIB3 involvement in the latter two processes, as triglyceride storage is reduced and membrane composition, which can restrain cellular expansion, is altered. Integrated interactome, phosphoproteome and transcriptome analyses support a role for TRIB3 in all three cellular processes through multiple cellular pathways, including Mitogen Activated Protein Kinase- (MAPK/ERK), Protein Kinase A (PKA)-mediated signaling and Transcription Factor 7 like 2 (TCF7L2) and Beta Catenin-mediated gene expression. CONCLUSIONS: Our findings support TRIB3 playing multiple distinct regulatory roles in the cytoplasm, nucleus and mitochondria, ultimately controlling adipose tissue homeostasis, rather than affecting a single cellular pathway.


Assuntos
Adipócitos , Tecido Adiposo , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/genética , Proliferação de Células , Homeostase , Lipídeos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras
6.
Nat Commun ; 13(1): 7090, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402763

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood. Here we take advantage of two previously uncharacterized lipodystrophy mutations, R212Q and E379K, that are predicted to interfere with the interaction of the hinge of PPARγ with DNA and with the interaction of PPARγ ligand binding domain (LBD) with the DNA-binding domain (DBD) of the retinoid X receptor, respectively. Using biochemical and genome-wide approaches we show that these mutations impair PPARγ function on an overlapping subset of target enhancers. The hinge region-DNA interaction appears mostly important for binding and remodelling of target enhancers in inaccessible chromatin, whereas the PPARγ-LBD:RXR-DBD interface stabilizes the PPARγ:RXR:DNA ternary complex. Our data demonstrate how in-depth analyses of lipodystrophy mutants can unravel molecular mechanisms of PPARγ function.


Assuntos
Lipodistrofia , PPAR gama , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Adipócitos/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Lipodistrofia/metabolismo , Sequências Reguladoras de Ácido Nucleico
7.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36142452

RESUMO

Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Ligantes , PPAR gama/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Proteínas Repressoras/genética , Fatores de Transcrição
8.
Sci Rep ; 12(1): 10081, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710704

RESUMO

Bladder cancer has a high recurrence rate and low survival of advanced stage patients. Few genetic drivers of bladder cancer have thus far been identified. We performed in-depth structural variant analysis on whole-genome sequencing data of 206 metastasized urinary tract cancers. In ~ 10% of the patients, we identified recurrent in-frame deletions of exons 8 and 9 in the aryl hydrocarbon receptor gene (AHRΔe8-9), which codes for a ligand-activated transcription factor. Pan-cancer analyses show that AHRΔe8-9 is highly specific to urinary tract cancer and mutually exclusive with other bladder cancer drivers. The ligand-binding domain of the AHRΔe8-9 protein is disrupted and we show that this results in ligand-independent AHR-pathway activation. In bladder organoids, AHRΔe8-9 induces a transformed phenotype that is characterized by upregulation of AHR target genes, downregulation of differentiation markers and upregulation of genes associated with stemness and urothelial cancer. Furthermore, AHRΔe8-9 expression results in anchorage independent growth of bladder organoids, indicating tumorigenic potential. DNA-binding deficient AHRΔe8-9 fails to induce transformation, suggesting a role for AHR target genes in the acquisition of the oncogenic phenotype. In conclusion, we show that AHRΔe8-9 is a novel driver of urinary tract cancer and that the AHR pathway could be an interesting therapeutic target.


Assuntos
Receptores de Hidrocarboneto Arílico , Neoplasias da Bexiga Urinária , Éxons/genética , Humanos , Ligantes , Mutação , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias da Bexiga Urinária/genética
9.
Cancers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944947

RESUMO

The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.

10.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166183, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058349

RESUMO

Metabolic nuclear receptors are ligand-activated transcription factors which control a wide range of metabolic processes and signaling pathways in response to nutrients and xenobiotics. Targeting these NRs is at the forefront of our endeavours to generate novel treatment options for diabetes, metabolic syndrome and fatty liver disease. Numerous splice variants have been described for these metabolic receptors. Structural changes, as a result of alternative splicing, lead to functional differences among NR isoforms, resulting in the regulation of different metabolic pathways by these NR splice variants. In this review, we describe known splice variants of FXR, LXRs, PXR, RXR, LRH-1, CAR and PPARs. We discuss their structure and functions, and elaborate on the regulation of splice variant abundance by nutritional signals. We conclude that NR splice variants pose an intriguing new layer of complexity in metabolic signaling, which needs to be taken into account in the development of treatment strategies for metabolic diseases.


Assuntos
Processamento Alternativo/genética , Doenças Metabólicas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Humanos , Fígado/patologia , Transdução de Sinais/genética
11.
Front Endocrinol (Lausanne) ; 12: 624112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716977

RESUMO

The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.


Assuntos
Metabolismo Energético/fisiologia , Sistema Imunitário/metabolismo , Neoplasias/metabolismo , PPAR gama/metabolismo , Adipócitos/metabolismo , Animais , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-32849273

RESUMO

The complex direct and indirect interplay between adipocytes and various adipose tissue (AT)-resident immune cells plays an important role in maintaining local and whole-body insulin sensitivity. Adipocytes can directly interact with and activate AT-resident invariant natural killer T (iNKT) cells through CD1d-dependent presentation of lipid antigens, which is associated with anti-inflammatory cytokine production in lean AT (IL-4, IL-10). Whether alterations in the microenvironment, i.e., increased free fatty acids concentrations or altered cytokine/adipokine profiles as observed in obesity, directly affect adipocyte-iNKT cell communication and subsequent cytokine output is currently unknown. Here we show that the cytokine output of adipocyte-iNKT cell interplay is skewed by a lipid-rich microenvironment. Incubation of mature 3T3-L1 adipocytes with a mixture of saturated and unsaturated fatty acids specifically reduced insulin sensitivity and increased lipolysis. Reduced activation of the CD1d-invariant T-Cell Receptor (TCR) signaling axis was observed in Jurkat reporter cells expressing the invariant NKT TCR, while co-culture assays with a iNKT hybridoma cell line (DN32.D3) skewed the cytokine output toward reduced IL-4 secretion and increased IFNγ secretion. Importantly, co-culture assays of mature 3T3-L1 adipocytes with primary iNKT cells isolated from visceral AT showed a similar shift in cytokine output. Collectively, these data indicate that iNKT cells display considerable plasticity with respect to their cytokine output, which can be skewed toward a more pro-inflammatory profile in vitro by microenvironmental factors like fatty acids.


Assuntos
Adipócitos/imunologia , Microambiente Celular/imunologia , Citocinas/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Resistência à Insulina/imunologia , Células T Matadoras Naturais/imunologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Microambiente Celular/efeitos dos fármacos , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo
13.
Gastroenterology ; 159(5): 1853-1865.e10, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712104

RESUMO

BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4, also called FXR) is a ligand-activated transcription factor that, upon binding of bile acids, regulates the expression of genes involved in bile acid, fat, sugar, and amino acid metabolism. Transcript variants encode the FXR isoforms alpha 1, alpha 2, alpha 3, and alpha 4, which activate different genes that regulate metabolism. Little is known about the mechanisms by which the different isoforms regulate specific genes or how the expression of these genes affects the outcomes of patients given drugs that target FXR. METHODS: We determined genome-wide binding of FXR isoforms in mouse liver organoids that express individual FXR isoforms using chromatin immunoprecipitation, followed by sequencing analysis and DNA motif discovery. We validated regulatory DNA sequences by mobility shift assays and with luciferase reporters using mouse and human FXR isoforms. We analyzed mouse liver organoids and HepG2 cells that expressed the FXR isoforms using chromatin immunoprecipitation, quantitative polymerase chain reaction, and immunoblot assays. Organoids were analyzed for mitochondrial respiration, lipid droplet content, and triglyceride excretion. We used the FXR ligand obeticholic acid to induce FXR activity in organoids, cell lines, and mice. We collected data on the binding of FXR in mouse liver and the expression levels of FXR isoforms and gene targets in human liver tissue and primary human hepatocytes from the Gene Expression Omnibus. RESULTS: In mouse liver cells, 89% of sites that bound FXR were bound by only FXRα2 or FXRα4, via direct interactions with the DNA sequence motif ER-2. Via DNA binding, these isoforms regulated metabolic functions in liver cells, including carbon metabolism and lipogenesis. Incubation with obeticholic acid increased mitochondrial pyruvate transport and reduced insulin-induced lipogenesis in organoids that expressed FXRα2 but not FXRα1. In human liver tissues, levels of FXRα2 varied significantly and correlated with expression of genes predicted to be regulated via an ER-2 motif. CONCLUSIONS: Most metabolic effects regulated by FXR in mouse and human liver cells are regulated by the FXRα2 isoform via specific binding to ER-2 motifs. The expression level of FXRα2 in liver might be used to predict responses of patients to treatment with FXR agonists.


Assuntos
Metabolismo Energético , Hepatócitos/metabolismo , Fígado/metabolismo , Motivos de Nucleotídeos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/citologia , Organoides/metabolismo , Ligação Proteica , Isoformas de Proteínas , Receptores Citoplasmáticos e Nucleares/genética
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1157-1167, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31051284

RESUMO

BACKGROUND: Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS: Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION: Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE: Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. ß-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.


Assuntos
Adipócitos/metabolismo , Glucosilceramidas/biossíntese , Células T Matadoras Naturais/metabolismo , Adipócitos/citologia , Apresentação de Antígeno , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Glucosilceramidas/metabolismo , Humanos , Resistência à Insulina , Lipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/citologia
15.
Mol Metab ; 20: 115-127, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30595551

RESUMO

OBJECTIVE: The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS: We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS: PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS: Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.


Assuntos
Lipodistrofia Parcial Familiar/genética , Mutação de Sentido Incorreto , PPAR gama/genética , Adulto , Sítios de Ligação , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Células HEK293 , Humanos , Lipodistrofia Parcial Familiar/patologia , PPAR gama/química , PPAR gama/metabolismo , Fenótipo , Multimerização Proteica
16.
Front Physiol ; 9: 1363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319454

RESUMO

Genetic lipodystrophies are a group of rare syndromes associated with major metabolic complications - including severe insulin resistance, type 2 diabetes mellitus, and hypertriglyceridemia - which are classified according to the distribution of adipose tissue. Lipodystrophies can be present at birth or develop during life and can range from local to partial and general. With at least 18 different genes implicated so far, definite diagnosis can be challenging due to clinical and genetic heterogeneity. In an adult female patient with clinical and metabolic features of partial lipodystrophy we identified via whole genome sequencing (WGS) a single complex AGPAT2 allele [V67M;V167A], functionally equivalent to heterozygosity. AGPAT2 encodes for an acyltransferase implicated in the biosynthesis of triacylglycerol and glycerophospholipids. So far homozygous and compound heterozygous mutations in AGPAT2 have only been associated with generalized lipodystrophy. A SNP risk score analysis indicated that the index patient is not predisposed to lipodystrophy based on her genetic background. The partial phenotype in our patient is therefore more likely associated to the genetic variants in AGPAT2. To test whether the resulting double-mutant AGPAT2 protein is functional we analyzed its in vitro enzymatic activity via mass spectrometry. The resulting AGPAT2 double mutant is enzymatically inactive. Our data support the view that the current classification of lipodystrophies as strictly local, partial or generalized may have to be re-evaluated and viewed more as a continuum, both in terms of clinical presentation and underlying genetic causes. Better molecular understanding of lipodystrophies may lead to new therapies to treat adipose tissue dysfunction in common and rare diseases.

17.
Cell Rep ; 24(8): 2127-2140.e7, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134173

RESUMO

Activation of macrophages by inflammatory stimuli induces reprogramming of mitochondrial metabolism to support the production of pro-inflammatory cytokines and nitric oxide. Hallmarks of this metabolic rewiring are downregulation of α-ketoglutarate formation by isocitrate dehydrogenase (IDH) and accumulation of glutamine-derived succinate, which enhances the inflammatory response via the activity of succinate dehydrogenase (SDH). Here, we identify the nuclear receptor Nur77 (Nr4a1) as a key upstream transcriptional regulator of this pro-inflammatory metabolic switch in macrophages. Nur77-deficient macrophages fail to downregulate IDH expression and accumulate higher levels of succinate and other TCA cycle-derived metabolites in response to inflammatory stimulation in a glutamine-independent manner. Consequently, these macrophages produce more nitric oxide and pro-inflammatory cytokines in an SDH-dependent manner. In vivo, bone marrow Nur77 deficiency exacerbates atherosclerosis development and leads to increased circulating succinate levels. In summary, Nur77 induces an anti-inflammatory metabolic state in macrophages that protects against chronic inflammatory diseases such as atherosclerosis.


Assuntos
Regulação da Expressão Gênica/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Humanos
18.
Front Immunol ; 9: 1192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892305

RESUMO

Invariant natural killer T (iNKT) cells are lipid-reactive T cells with profound immunomodulatory potential. They are unique in their restriction to lipid antigens presented in CD1d molecules, which underlies their role in lipid-driven disorders such as obesity and atherosclerosis. In this review, we discuss the contribution of iNKT cell activation to immunometabolic disease, metabolic programming of lipid antigen presentation, and immunometabolic activation of iNKT cells. First, we outline the role of iNKT cells in immunometabolic disease. Second, we discuss the effects of cellular metabolism on lipid antigen processing and presentation to iNKT cells. The synthesis and processing of glycolipids and other potential endogenous lipid antigens depends on metabolic demand and may steer iNKT cells toward adopting a Th1 or Th2 signature. Third, external signals such as toll-like receptor ligands, adipokines, and cytokines modulate antigen presentation and subsequent iNKT cell responses. Finally, we will discuss the relevance of metabolic programming of iNKT cells in human disease, focusing on their role in disorders such as obesity and atherosclerosis. The critical response to metabolic changes places iNKT cells at the helm of immunometabolic disease.


Assuntos
Apresentação de Antígeno , Antígenos CD1d/imunologia , Citocinas/imunologia , Glicolipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Animais , Humanos
19.
Endocrinology ; 159(6): 2397-2407, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718163

RESUMO

Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.


Assuntos
Proteínas Correpressoras/genética , Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Animais , Análise por Conglomerados , Proteínas Correpressoras/metabolismo , Bases de Dados de Proteínas/normas , Bases de Dados de Proteínas/provisão & distribuição , Desenho de Fármacos , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Filogenia , Ligação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/metabolismo
20.
Immunology ; 153(2): 179-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28898395

RESUMO

The global obesity epidemic and its associated co-morbidities, including type 2 diabetes, cardiovascular disease and certain types of cancers, have drawn attention to the pivotal role of adipocytes in health and disease. Besides their 'classical' function in energy storage and release, adipocytes interact with adipose-tissue-resident immune cells, among which are lipid-responsive invariant natural killer T (iNKT) cells. The iNKT cells are activated by lipid antigens presented by antigen-presenting cells as CD1d/lipid complexes. Upon activation, iNKT cells can rapidly secrete soluble mediators that either promote or oppose inflammation. In lean adipose tissue, iNKT cells elicit a predominantly anti-inflammatory immune response, whereas obesity is associated with declining iNKT cell numbers. Recent work showed that adipocytes act as non-professional antigen-presenting cells for lipid antigens. Here, we discuss endogenous lipid antigen processing and presentation by adipocytes, and speculate on how these lipid antigens, together with 'environmental factors' such as tissue/organ environment and co-stimulatory signals, are able to influence the fate of adipose-tissue-resident iNKT cells, and thereby the role of these cells in obesity and its associated pathologies.


Assuntos
Tecido Adiposo/imunologia , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Lipídeos/imunologia , Células T Matadoras Naturais/imunologia , Obesidade/imunologia , Adipócitos/imunologia , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Células Apresentadoras de Antígenos/patologia , Antígenos CD1d/imunologia , Humanos , Células T Matadoras Naturais/patologia , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...